Prof. Steve Kirschvink

Office Hours: MWF 9 → 9:50 am and MW 2 → 3 pm

Office: GMCS-583 - Phone: 594-6334 - email: skirschvink@mail.sdsu.edu

T.A.’s.: Charlie Gamble (12pm HH-130 Class, T Sections) and Saenal Kim (1pm COM-207 Class, Th Sections)

T.A. Office: GMCS-528 - Phone: 594-2993 TA’s office hours will be announced in Section.

Websites: http://blackboard.sdsu.edu (Handouts, Announcements, Assignments, Exam scores)
 http://www.wileyplus.com Optional! (Student learning resources, practice problems)
 www.math.sdsu.edu You can find Tutoring and Final Exams from previous semesters by
clicking on Resources at top of website.

Tutor Room: To be announced: www.math.sdsu.edu Click on Resources.

Text: Calculus-(Early Transcendentals, Single Variable, 10th Edition), by Anton, Bivens, Davis

Prerequisite: Passing SDSU Math 141 (Precalculus) with at least a grade of C, or qualification on the
Mathematics Departmental Precalculus Proficiency Examination.

Calculators: No calculators or any electronic device may be used during the Exams. They may be used
on certain homework problems where numerical calculations need to be made, i.e., sin(3.92).

Note: This is a very fast paced course. Do not get behind! Learn the ideas presented in
class before the next lecture where you will surely deal with even more ideas! This
course will likely run much more rapidly than your High School Calculus Course!!

Grading: Weekly Quizzes 15%
 Three Exams 60% No make-ups – See Remark 3
 Final Exam (Sat., Dec 14, 8-10 a.m.) 25%

Homework: Will be assigned but not collected. Your score on the Weekly Quizzes will
reflect your understanding of the Homework, which includes ideas and concepts
from the reading assignments in the text as well as the assigned problems.

Attendance Mandatory – See Remark 1.
Remark 1: Attendance to all lectures is mandatory. We will often expand upon the ideas discussed in the book and some of the ideas and problems from the lectures may appear on the Exams and Quizzes.

Remark 2: There are lots of problems in the book and so not all of them will be assigned. However, if you “understand the homework”, then you should be able to:
1. work out or solve similar problems
2. combine the different ideas needed for two problems to solve a third problem
Similar problems are not necessarily those where the “numbers” are changed! If fact, the character of an entire equation and its solution(s) may be changed by changing “numbers.” Similar problems can be classified by the underlying ideas and techniques needed to solve them.

Remark 3: There are no make-up exams. If you miss an exam do to an emergency or illness, and you present verifiable documentation explaining the absence (i.e., letter from your doctor with addresses and phone numbers), then the other two exams will count as 60% of your grade. If you miss two exams, then you will need to take the course again.

Remark 4: Throughout the entire semester, you will be required to understand the ideas and techniques previously covered at all times. For example, having a thorough understanding of the limits discussed in Section 1.1 will be necessary throughout the remaining sections covered in this course.

Remark 5: Since algebra is the “language” of calculus, it is important to be efficient at simplifying and manipulating quantities involving trigonometric, logarithmic, exponential, and fractional terms. Thus, having a Precalculus text as a reference is highly recommended.

Syllabus: We will cover sections of Chapters 0, 1, 2, 3, 4, and 5. You will only be responsible for the Sections of the Text where reading or problems have been assigned in the Homeworks.

Homework #1 Quiz #1 is in the T Sept. 3 or Th Sept. 5 Breakout Section with your TA

Section 0.1 #'s 7, 9(c, e, f), 28
Section 0.2 #'s 1, 7, 11, 32, 33, 63, 67, Do the “Also Do” problem
Section 0.3 #'s 3, 5, 8, 31, 35

Also Do: Let \(f(x) = \sqrt{4 - x^2} \). Define function \(g \) with the values \(g(x) = -4f(6 - 2x) \). Explain why the domain of \(g \) is determined by the inequality \(-2 \leq 6 - 2x \leq 2\). Find the domain, the range, and graph the function \(g \). Hint: First graph \(f \) and then plot a few points in the domain of \(g \). Note that \(f(6 - 2x) \) is to be interpreted as a composition of the function \(f \) with the function \(6 - 2x \), not as a product.