BUILDING NEVERLAND - A TECHNICAL DIRECTOR'S ADVENTURE

IN PLANNING AND EXECUTION OF THE PLAY: PETER PAN & WENDY

A Thesis
Presented to the
Faculty of
San Diego State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Fine Arts in Theatre Arts
with a Concentration in
Design and Technical Theatre

by
Eben Patrick Alguire
Spring 2013
SAN DIEGO STATE UNIVERSITY

The Undersigned Faculty Committee Approves the

Thesis of Eben Patrick Alguire:

Building Neverland – A Technical Director’s Adventure in Planning and

Execution of the Play: Peter Pan & Wendy

Loren Schreiber, Chair
School of Theatre, Television, and Film

Margaret Larlham
School of Theatre, Television, and Film

Timothy Powell
School of Theatre, Television, and Film

4/17/13
Approval Date
Copyright © 2013
by
Eben Patrick Alguire
All Rights Reserved
DEDICATION

I dedicate this work to my loving wife, Andrea Margaret Alguire. She followed me out to San Diego once she finished college, and has never stopped supporting me. I can only hope that I can do the same for her.

I also dedicate this work to my parents, who have believed in my abilities throughout my whole life, even if I did not.
ABSTRACT OF THE THESIS

Building Neverland – A Technical Director’s Adventure in Planning and Execution of the Play: *Peter Pan & Wendy*

by

Eben Patrick Aguire

Master of Fine Arts in Theatre Arts with a Concentration in Design and Technical Theatre

San Diego State University, 2013

This project based thesis is a thorough account of the planning and production of the play *Peter Pan & Wendy*, from design meetings through strike. It details drafting, budgeting, rigging, and special considerations.
TABLE OF CONTENTS

PAGE

ABSTRACT...v
LIST OF FIGURES .. vii
LIST OF PLATES .. viii
ACKNOWLEDGEMENTS .. ix

CHAPTER

1 INTRODUCTION ..1
2 THE EVOLUTION OF THE DESIGN ...2
3 PLANNING AND EXECUTION ..4
 Drafting ...4
 Budgeting ...8
 Rigging ...10
 Modification ...11
 Set Dressing ..12
4 STRIKE ..14
5 CONCLUSION ...15

REFERENCES ..16

APPENDIX

A PRODUCTION PHOTOGRAPHS..17
B COPIES OF SCALED DRAFTING ..27
C COPIES OF BUDGETING PAPERWORK ...41
D PUNCH LISTS ..45
E STRIKE LIST ...50
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>An early sketch of the set.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2</td>
<td>A near final rendering of the design.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3</td>
<td>A white model of the final design.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 4</td>
<td>A production photograph of the whole set.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Band platform.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Full stage in the Darling house.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Transition to Neverland, featuring acrobatic ropes and two sails.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Forest scene, featuring moon, wolf eyes, and two sails.</td>
<td>23</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Mermaid scene, featuring two sails.</td>
<td>23</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Pirate pier.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Close up featuring set dressing.</td>
<td>25</td>
</tr>
<tr>
<td>Figure 11</td>
<td>After the battle, featuring ropes, sails, and trap door.</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1</td>
<td>Ground plan</td>
<td>28</td>
</tr>
<tr>
<td>Plate 2</td>
<td>Masking ground plan</td>
<td>29</td>
</tr>
<tr>
<td>Plate 3</td>
<td>Section</td>
<td>30</td>
</tr>
<tr>
<td>Plate 4</td>
<td>Masking section</td>
<td>31</td>
</tr>
<tr>
<td>Plate 5</td>
<td>Pit leaves</td>
<td>32</td>
</tr>
<tr>
<td>Plate 6</td>
<td>Thrust</td>
<td>33</td>
</tr>
<tr>
<td>Plate 7</td>
<td>Band platform</td>
<td>34</td>
</tr>
<tr>
<td>Plate 8</td>
<td>DSL platform</td>
<td>35</td>
</tr>
<tr>
<td>Plate 9</td>
<td>US platforms</td>
<td>36</td>
</tr>
<tr>
<td>Plate 10</td>
<td>Sails</td>
<td>37</td>
</tr>
<tr>
<td>Plate 11</td>
<td>Bed, truss, and moon</td>
<td>38</td>
</tr>
<tr>
<td>Plate 12</td>
<td>Shadow screens and ground row</td>
<td>39</td>
</tr>
<tr>
<td>Plate 13</td>
<td>Drum baffle</td>
<td>40</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to acknowledge the efforts of several people working with and around me during this project. First off, my wonderful graduate student assistant technical director, Gabby Heerschap. She shared parts of the drafting and budgeting load, and put up with my strange music selections during the longest days. Thanks as well, of course, to my second assistant technical director, James Ramirez, who kept a stage manager's mindset and reminded me of everything I was overlooking. To our shop foreman, Jeremy Lazzara, who is one of the most efficient carpenters I have had the pleasure to work with, and without whom, the show would not have been completed on time. And last, but certainly not least, my adviser and friend, Loren Schreiber. He taught me nearly everything that I know in the field of technical direction, encouraged my imagination, and was kind enough to let me know when I was over-complicating my solutions, which I often did.
CHAPTER 1

INTRODUCTION

This was an exciting opportunity, to put it lightly. My final show at San Diego State University was a main stage production of a story I've loved since childhood, working with an incredibly creative and distinctive team. Well, exciting and intimidating. My first step in such a project is to do informal research on the work, which is purely for my own benefit, in order to get a little perspective for the undertaking.

The character and story of Peter Pan was created by James Barrie. He introduces the world to not only Peter, but the Darling children, the Lost Boys, Tinker Bell, and of course, the dastardly pirate, Captain Hook. The original play, entitled *Peter Pan; or, the Boy Who Wouldn’t Grow Up*, originally debuted in London in 1904 (“From the archive, 28 December 1904…”) and soon after on Broadway in 1905 (“Peter Pan”). It has since been adapted to utilize pantomime, shadow screening, puppetry, and flying.

Armed with that information, and quite a bit more (which became somewhat irrelevant, due to the nature of this production), I began discussions with Margaret Larlham, the director, and Ryan Grossheim, scenic designer. It quickly became apparent that we were not going to be erecting a “traditional” production of *Peter Pan*. Professor Larlham adapted the script to feature a combination of actors and life-sized puppetry, acrobatic stunts, and dance and movement. The overall look of the piece was to be an amalgam of classic fairy tale, modern, almost anachronistic fantasy, and a bit of rock and roll. The final addition was to incorporate projections and original music in order to provide an immersive experience for the audience.

Our course was set, heading for the Don Powell Theatre at SDSU from November 16th through December 2nd, 2012.
CHAPTER 2

THE EVOLUTION OF THE DESIGN

As in many productions, the scenic designer created and explored several different versions of the set before the realized design was developed. Some aspects of the early design carried through to the final design, and some aspects simply disappear. Each version of the set contained its own technical challenges and budgetary constraints. Part of the job of a technical director is to keep up to date with the proposed and constantly evolving elements, in order to not be blindsided when the final design is turned in. Another responsibility of the technical director is to advise the designer and director regarding the feasibility and safety of the plan, in order to present the best possible show.

One of Ryan's early sketches (Appendix A, Figure 1) presented in design meetings, had features of both a circus and the exposed workings of a theatre in a nonrealistic manner, or “showing the apparatus,” as Brecht would call it, blending the rigging of the space with the conceived rigging of a ship, and trying to blur the lines between the world of the play and the space in which the audience sits. This sketch indicates several objects suspended in the air at various points and, though it was too early to assign definite special effects, it was implied that several aspects of the set would move or become animated somehow, such as the rigging pin rail, canopy, and crocodile stairs.

While quite a bit of the initial design was discarded in favor of other ideas, several characteristics moved on to the final design in one form or another. For example, the thrust stage, with a ship's hold door, the wide platform upstage, hanging truss, and rope proscenium would all survive to the next round of design ideas. There was also a rope or net ladder hanging in the background, up stage right, that strongly resembles what will later become a sail.

After several months of revision and development, Ryan Grossheim provided this version of the set (Appendix A, Figure 2). This drawing is one of the last before the final design was submitted, and it looks far closer to the end result. The stage right band platform and the stage left “tree house” have appeared, as well as the fire pole directly upstage of the
“tree house.” This is also where the pirate flag and the moon, which would become very important for Justin Van Hassel, the lighting designer. The small piece of truss from the early sketch has become a large false proscenium, the thrust stage has enlarged, the giant crocodile has become a long staircase, and the rope ladder has become a large sail. In a few versions before Figure 2 in Appendix A, the stacked platforms to either side of the thrust stage were added, although they were originally sloped and rounded. While still not near a final design, Grossheim was advised that rounded platforms on such a scale would be expensive and limit the budget for all other design elements.

Around this time, we discussed the possibility of acrobatics. We looked into a few options, including taught horizontal lines (similar to tight ropes), anchored vertical ropes for swinging, and zip lines. The zip line concept stuck around for quite a while, and one of my assistants was tasked to research the practicality of such an undertaking with our resources.

When the final design package was due, Ryan also provided a white model (Appendix A, Figure 3), to help demonstrate the scenic composition during the various scenes (for a comparison with the actual set, a full stage production photograph is featured on the same page as Figure 3). All the way upstage, the beach/dune fence had appeared. The long staircase upstage has been replaced with a spiral staircase and a second tier platform, and the whole construct has moved to center stage, and the shadow screens have filled their respective openings. The ship's grating has appeared in the thrust and all of the sails are now present.

For the flying effects, we decided to use ropes, anchored to the concrete proscenium, instead of the zip line. The zip line proved to be problematic and cost prohibitive in regards to the production as a whole, and the necessity of safety harnesses would pose many problems for the costume designer. I anchored a single rope to the concrete proscenium at center stage, and attached two ropes on either side of the single center rope at two points, creating a “U” shape.
CHAPTER 3

PLANNING AND EXECUTION

As soon as I received the final design drawings, I got to work in a “scratch paper” file in order to make sure we would be in the ballpark for funding and capability. I have found that these rough drawings, with the objects approximated to convenient numbers for fast math, helps quite a bit in heading off future surprises. They let me see if the set will be wildly over or under budget (although, the closer the numbers get to the given budget, the less reliable they are).

DRAFTING

When it came to creating the shop drawings, I delegated some of the work to Gabby Heerschap and Loren Schreiber in order to finalize them more efficiently. Loren took the sails (Appendix B, Plate 10), and Ms. Heerschap claimed the thrust (Appendix B, Plate 6), the down stage right band platform (Appendix B, Plate 7), the down stage left “tree house” (Appendix B, Plate 8), and the bed (Appendix B, Plate 11). I worked on the remainder.

There are two ground plans and two sections (Appendix B, Plates 1-4) in order to depict the location of the scenery and the masking with as little confusion as possible.

My first priority was to tackle the pit leaves (Appendix B, Plate 5). They would require the most manpower to install, but they were very simple. Each leaf segment was comprised of two of the theatre's stock 4'x6' platforms. Leaves 1, 3, 4, and 6 had a small triangular custom platform attachment to give them a distinct shape. Next came the lid sheet layout, which is a simple diagram that directs the shop where to use full sheets (4'x8') of material, how to cut custom sheets, and shows how to orient the wood grain. Due to the heavy paint treatment on most of the scenery, sheet layouts were created and distributed earlier than the rest of the information. Finally, the leg layout was created. A leg layout will describe to the shop what the platform legs are made of and where they are located. Only the structurally significant legs were included in this drawing, and all decorative legs were created and attached with the designer after the rest of the set was completed. Multiple
layouts were created of the final assembly to reduce confusion in what was a fairly complicated operation.

The pit leaves step up from both sides of the thrust (Appendix B, Plate 6). Because of its length, the thrust was designed to be built in two distinct sections, which were then bolted together in place. All of the platforming was custom, but luckily it was mostly rectangular. The framing was 2x4 with a 3/4” plywood lid. There was a trap door in the upstage-most thrust segment which lead down a ladder into the orchestra pit. The door had two sections opening upwards from center, and was comprised of two pieces of plywood laminated together. In the closed position, it rested on a 1x3 ledge that spanned the perimeter of the hole. The latches were inset into the surface. The other segment was to have holes as well, but would be covered with subway grating, so it could serve as a lighting position. When it was in place, it extended through the two front rows of the audience.

The band platform unit (Appendix B, Plate 7) was probably the simplest to put together. The platform itself was six stock 4'x6' platforms (four on the lower level, two on the upper level). The pipe structure on the upstage edge of the unit (Figure 5 in Appendix A) was a little more complicated. It had to support not only itself, which was nearly fifteen feet tall at the tallest point, but also some lighting equipment. It also had to provide a suitable attachment surface for the band's name. All of the upright pieces were made of recycled batten pipe, which was flanged to the floor. The top horizontal pipe was also batten pipe, which was attached to the uprights with Cheeseborostm. Once the top piece was attached, the lower horizontal members, which were 1-1/2”x3/4” steel rectangular tube, were bolted to the uprights. The letters were then attached to the rectangular tube with self-tapping metal screws, also known as tek screws. A diagonal pipe was added to the upstage side of the structure to provide support, similar to a stage jack.

For the down stage left platforms (Appendix B, Plate 8), we decided to use the metalworking class to construct steel frames. After breaking down the cost-to-strength aspects of our options, we purchased 2”x4” (16 gauge) rectangular tube. The framing for the 4'x8' and 4'x4' platforms was standard construction (outer frame and interior joists), and would be covered with 3/4” plywood. The platforms required legs that could reach the upper pit leaf, the stage floor, the audience floor, and the upper 4'x4' had to land a leg on the
lower 4'x8'. The design also called for the legs to be 2x4, 4x4, and batten pipe. Each leg socket was crafted to fit a particular leg, with the batten pipe welded in place, and the wooden legs attached with lag bolts. The long ladder, leading from the pit leaf to the 4'x8' platform was an aluminum straight ladder with the upper four rungs removed. The short ladder was constructed with 2x4 stringers and 1” pipe rungs. These rungs were attached to the 2x4 with pipe flanges.

The up stage “pirate ship” platform (Appendix B, Plate 9) was another major scenic element that had to go to the shop quickly. Since the “ship” was in the path of the rope swings, we wanted to put in place early enough so that the performers had time to practice not hitting it. This unit was largely made of the 4’x6’ stock platforms, at various heights. The ship's ladder stage right was simply an excessively steep staircase. We used 2x8 for the stringers and treads and 1x3 for tread supports. The balusters were 1x3 sticks placed at irregular intervals and at various angles, and the handrail was 1x3 hogstrough with rounded corners. For the small custom landings, we built simple rectangular 2x4 and plywood platforms. According to the designer drawings, the upper platforms could have no central support, because that area was a large shadow screen. This was a bit of a problem because the platforms themselves weigh two hundred pounds, and are traditionally only held together with coffin locks. After discussions with the designer and with Professor Schreiber, I decided to purchase two pieces of 2”x2”x3/16” steel angle, which was bolted to the upstage and downstage undersides of the unit, and attached with several load-rated bolts, vertically and laterally. As constructed, there was no noticeable give or sponginess to the platform. The pipe structure on the upstage side of the platform served as both a decoration piece and a railing. The towers were 4x4 posts with metal pipe (structural) and PVC (decorative) rails. For the most part, the legs were the Telespar™ square tube legs that normally support the stock platforms, though some were also vertical truss pieces or 4x4 posts. The railings were installed on site, under the designer's direction.

The moon (Appendix B, Plate 11) was a joint project between the scenic and lighting department. Justin Van Hassel and Conor Mulligan (master electrician) retrofitted a moon set piece that was sitting in storage to have four distinct circuits, allowing the moon to have multiple phases. My job was to make it move. To accomplish horizontal motion, we hung the moon on two carriages on an automated traveler track. To achieve vertical movement,
the track and winch were hung on an appropriately counterweighted lineset. On the ground, the shop bolted a winch into the floor with cables run to the bottom of the arbor, and up through a sheave attached to the strongback, leading back to the top of the arbor. Both winches were controlled by a Creative Conners Spikemark™ system. The lighting circuits for the moon itself were dropped from center stage in the grid, and secured with enough slack to give it the full range of movement, but so that the excess did not drop past the masking.

The bed unit also appears on this drawing. This piece was particularly challenging, as it was a mobile raked platform, which had to withstand the weight of multiple performers. This unit would serve as the bed in the Darling house and the pirate ship/pier in Neverland. The platform frame was 2x4, and had to accommodate a plywood seam (the lid needed to be 4'6" wide) and irregular legs. The square legs were hollow boxes, made with wooden planks, with castor platforms recessed near the bottom. The cylindrical legs required “X” shaped plywood inserts to provide structural support, while the outside was sonotube. A removable muslin “head board” was made to span the rear leg posts. The last unit appearing on this plate is a truss layout, which shows how the hanging horizontal truss and the vertical truss towers were put together.

The bed unit also appears on this drawing. This piece was particularly challenging, as it was a mobile raked platform, which had to withstand the weight of multiple performers. This unit would serve as the bed in the Darling house and the pirate ship/pier in Neverland. The platform frame was 2x4, and had to accommodate a plywood seam (the lid needed to be 4'6" wide) and irregular legs. The square legs were hollow boxes, made with wooden planks, with castor platforms recessed near the bottom. The cylindrical legs required “X” shaped plywood inserts to provide structural support, while the outside was sonotube. A removable muslin “head board” was made to span the rear leg posts. The last unit appearing on this plate is a truss layout, which shows how the hanging horizontal truss and the vertical truss towers were put together.

The next drawing mostly involves the various shadow screen puzzle pieces (Appendix B, Plate 12). The small screens are stretched muslin sandwiched between two 1x3 frames with overlapping seams. The two rows show the front and back frames. Originally, the small puzzle piece frames were to come together to fill the space under the ship's ladder and the platform connected to the ships ladder. They would then be taken away or replaced by cast and crew during scene changes. This concept changed during rehearsal so that they were simply used as props during a specific musical scene.

The large screen was built in a manner similar to the smaller pieces, but also had handles on the back and hooks on the top. Its playing position was under the large double platform, and it was kept in place with the hooks. It acted both as a shadow screen and projection surface. During transitions, the screen was moved by stagehands.

Also on this plate was the ground row, which was a late addition to the design. The ground row was constructed mostly with miniature practice flats that were made by the
members of the Design and Tech I (scenic section) class. The miniflats were assembled together with a few long 1x3 hogstroughs on the bottom, and 1x3 stringers on top.

The drum baffle (Appendix B, Plate 13) was the final piece to be drafted, as it was the last to be conceived by the designer. This simple piece was made of two reversed theatre style hard flats (framing facing the audience) with decorative diagonal toggles. The pieces were hinged together and sound nullifying foam was stapled to the inside lauan face.

BUDGETING

All numbers referenced in this section can be found in Appendix C.

Due to the small budget ($2,500) of a show of this magnitude, special effort was was put into scrounging, salvaging, and saving, from the very beginning. One of the first cost cutting measures involved using the university's stock metal framed 4'x6' platforms. I spoke with the designer when he was working on the final design packet was due and explained the economic benefits of using stock platforms whenever possible. I acquired permission to modify any platform with irregular dimensions that were close to the 4'x6' stock unit (or combinations of multiple platforms), in order to reduce the number of custom platforms that had to be constructed.

The shop made an effort utilize 4x4 posts for legs and decoration. The shop had adopted a large number of these posts over the years, though they were rarely used in shows. We were able to repurpose them for our show at no cost. Similarly, the batten pipe designated for the pipe structures and for some legs had been sitting useless in storage for as long as anyone could remember. These too were used in our show at no cost. The stringers and treads on the ship's ladder on the upstage platform were constructed with scrap 2x8 left over from a previous show. The only cost for this unit's construction was for the 1x3 in the balustrade.

We also received a few items from other institutions in the past year, which went towards the show. After the USITT conference in 2012, the group in charge of the Prague Quadrennial display allowed our school to salvage whatever items we wanted that were struck from their exhibit. Among the items scavenged were a few hundred feet worth of steel truss. These truss pieces were then used to create the false proscenium and multiple legs, both structural and decorative, on the up stage platform. Several lengths of hemp rope
were acquired from a nearby college after they had undergone a rigging overhaul for their counterweight system. These ropes were used for the rope header and for set dressing.

During the design period, we received information that we might be able to salvage two large pieces of subway grating. The thrust was designed to use these as the ship's hold grating, and Van Hassel decided to use the space underneath as a lighting position. Unfortunately, the steel grating ended up being unavailable and we had to concoct a plan B. Each grate was made with two half sheets of 3/4” plywood laminated together. A grid of 15x15 rectangles were cut out, and each unit was supported by the previously designed grating ledge in the holes, as well as a 2x4 toggle down the center.

One of the last units added to the design was the ground row. Its need was discovered after most of the show was already budgeted out. At this time, however, the Design and Tech I (scenic section) class was working on their 2'x3' miniature theatrical flats. The width of the flats matched the prescribed height of the ground row, and the length of all of the flats together was close enough to the width of the ground row for it to work.

The most expensive aspect of the show was the quantity of plywood sheet, counting both 3/4” shop plywood and 1/4” lauan. Every visible face and lid was covered with lauan as a paint surface, and each custom platform had a 3/4” plywood lid. With 33 sheets of lauan and 8 sheets of 3/4” plywood, the plywood cost nearly reached $700, over one-third of the total scenic budget.

Coming in second for expense was the large order of soft goods used in the sails, ground row, and flag. Because of the scale of these items, we could not substitute anything for the new fabric. The final cost for the soft goods was just under $600, or roughly a quarter of the budget.

Another large expense was the combined costs of 2x4, both wooden and steel. The wooden 2x4 was present in nearly every set piece, usually as framing or legging material, and the steel 2x4 was used exclusively to frame the down stage left platforms. This lumber was quite prevalent, and between the two, we consumed 500 feet, which puts the cost at around $600, or another quarter of the budget.

All of the rest of the items left on the budget worksheet make up the remainder of the money spent. In that category, the only unexpected element was the dune fence, which had to be ordered from out of state, due to it not being stocked anywhere locally, and the
shipping costs added an extra $40 to its price tag. Fortunately, this was affordable, and the show came in more than $300 under budget, thanks to the aforementioned scavenging and salvaging.

RIGGING

There were several aspects of the show that required special rigging. The most obvious, were the sails (Appendix B, Plate 10). They were deceptively simple, though massive in scale. The first sail installed was the stage left British kite sail, which required no internal support or structured reefing. The bottom of the sail was attached to the floor, and the top was attached to a small board. The board had two pulleys attached to it, through which rope then ran up to the batten and down again to the rail, where they were connected together to form an infinite loop. Because the sail was so tall, it could not simply be attached to the batten, or it would stray into the audience's sightlines. The system is inherently self stabilizing.

The second sail, center stage, was modeled after the European square sail. It was constructed with two wooden battens for the top and bottom, with several vertical strips of poly-silk, sewn together, spanning the distance between. The top batten was tied to lineset 17 with hemp rope. Aircraft cable ran from the bottom batten, through small holes cut in the top batten, and up to lineset 18. To move and deploy the sail, the operator would first lower both linesets in to a predetermined position, and then continue to lower lineset 18 until the fabric became taut. With a little bit of practice, the movement quickly became smooth and natural looking.

The third sail, also known as the junk sail (referring to a Chinese junk), was positioned stage right. This was the last sail to be installed and the most complicated. The sail itself was created with several horizontal or near horizontal wooden battens. The shop created a mast out of metal pipe, and the wooden sail battens attached to the mast with rope “rings,” which allowed for movement vertically on the mast, but not away from it. A cross member was welded to the bottom of the vertical mast, which provided the relative extreme lower position of a reefed sail. The mast was attached to lineset 20 with a Cheeseboro™. Cables were run through the sail and to lineset 21, in order to control the deployment of the sail. Operation was similar to that of sail number 2, in that both linesets were used to fly the
unit in and one would then deploy the sail. It differed, however, in that, to unfurl the sail, the controlling lineset had to move in the opposite direction of the whole unit's movement.

The other major rigging project was also simple, though it was subject to more care because it supported performers. The acrobatic ropes hanging from the proscenium served to symbolize flight, fight, and as a distraction during major scene changes. For the trick, we used 1-3/8” double braid synthetic rope. The connection points of the rope had eyes tied in the ends with figure-8 knots. Chain connected the eyes to a shackle, which connected to a hard point bolted into the top of the proscenium with grade 8 locking hardware. All shackles were locked tight with safety wire, and the bolts were checked and tightened each week. The plan called for three acrobatic ropes, one hanging vertically from one point in the center, and two hanging to either side, attached at two points to create a U-shape swing. Smaller ropes were rigged at the base of each proscenium tower, running directly up to the grid, and down again. This was so that when the ropes were not in use, they could be connected to the smaller ropes and pulled out to either side.

The fire-pole sitting under the proscenium required a simple rigging solution. The pole itself was 3” diameter steel thin wall tube with a flange base welded on the bottom. This base was lagged to the floor. The pole could not be placed directly underneath a convenient concrete anchor in the proscenium, due to the placement of the platform. The solution to this was to use a steel proscenium extension arm. This arm attached to the anchor in the proscenium with load-rated hardware, and reached out to where the pole could be conveniently planted, and bolted through the top. This upper connection provided quite a bit of stability when the pole was in use.

MODIFICATION

No set goes unmodified by the time the show opens. Things can change due to altered use and circumstance, designer or director preference, or some ideas just simply not working as intended. The modification to the fire-pole was one such example, as was the removal of the central acrobatic rope. In the original design, five tetherballs, painted to look like cannon balls, were to hang on the upstage pipe of the electric grid. These would be used in the climatic battle on Captain Hook's ship. After I hung the first ball, the cast experimented with it for a few days. Ultimately, the director decided to cut the effect.
Originally, we hung the rope proscenium decoration on the upstage pipe of the “electric” grid as well, but it was eventually moved back to lineset 3, in order to pull it away from the lighting instruments, and to decrease its overbearing prominence. An extra ladder was added to the down stage left platforms in the week immediately preceding tech week, to allow for an extra entrance/exit to the platform. This ladder was a standard aluminum straight ladder borrowed from the shop, and was screwed to the floor and bolted to the platform.

The bed/boat/pier unit was given to the cast to rehearse early in the rehearsal period, and was equipped with rubber footed brakes. Over the course of the rehearsals, actor interaction increased with the unit, to the point where the brakes were breaking and falling off. The new action on the unit included jumping on and off of the platform, as well as combat. We were able to determine two locations where the bed had to remain motionless and attached steel cane-bolts to the square legs. We then drilled holes in the stage under the cane bolts in the areas where the bed had to become immobile and taught the performers and backstage crew how to operate the new system.

Once the major aspects of the set was complete, I recorded the scenic additions and modifications, repair notes, and whatever else was incomplete from the submitted design onto daily “to do” or “punch” lists (Appendix D). The list was emailed to the shop daily, and I kept a hard copy, and I checked off completed items, and noted semi-complete items. It largely served to keep me organized and on top of the end game of the build, however, being able to see the remainder of the known aspects of the show on a daily one page list served as a significant morale booster.

SET DRESSING

The set dressing was the last major step in this show’s construction. These additions were not structural or load bearing. Despite this, the dressing is still quite important, as it ties the visual look together. My first priority was the posts and stumps attached to the upstage platform and down stage left platforms. While not officially load bearing, they had to still be attached with bolts, so that if a performer were to accidentally lean or push on it, it would not topple. These posts were made of 2x4, 4x4, and wedge-top sonotube with a 2x4 core. Old 1/4” aircraft cable was then run through these pieces to complete the railing look.
After the posts on the tops of the platforms were installed, extra decorative legs were added to the platforms. For the upstage platforms, the legs were largely truss, sonotube, and 1x shells around existing legs. With this unit being ever present and prominent, it was aesthetically important to provide a variety of appearances. Also to this end, extra decorative bracing pieces were introduced, in order to break up the visual regularity. I provided a similar treatment the downstage left unit, though to a lesser extent, as it was designed to use several different kinds of structural legs already.

A forest of nonfunctional legs was introduced to the pit leaves and band platforms. These were mostly 2x4, 4x4, 6x6, and PVC. Unlike with the other platforms, these legs were installed at non-vertical angles, with the goal to make it appear as if it were pieced together with flotsam and scrap, over the course of several years. There were also placed in such a way that it would give the illusion that the legs continued in the same fashion beyond the sight of the audience.

Once these units were installed, plastic and metal chains were draped on the railings of the tall platforms. Moss and other plant life were draped along the dune fence and wooden crate props. Hemp rope was also draped on various parts of the set (Figure 12 in Appendix A). Netting was mantled on several sections as well.

Around this time, the paint shop finished painting the pirate flag. The cloth flag had a pipe pocket sewn into the top and had a frayed bottom. A length of aluminum conduit was given a curve with the roll bender, in order to let the flag drape more naturally, and then inserted into the pipe pocket. The whole unit was then hung on lineset 14.
CHAPTER 4

STRIKE

Once tech week was over and the performances began, the tricky process of planning the strike started. From the bat, I would be the strike coordinator, and eschew manual labor in favor of being available to assign jobs and explain the various steps required for the dismantling and salvage of each unit. To this end, it would be important, especially in the first two hours, to assign team leaders and followers. Each leader would receive a piece of cardboard with a list of tasks attached to it (Appendix E), except for the person who was assigned to demolition in the shop. Their job was to salvage what was practical to salvage, and reduce everything else to pieces small enough to be efficiently packed into a dumpster.

The cardboard assignments detailed a set of one or more jobs, dismantling instructions (if applicable), what tools would be needed, and the eventual destination of the unit or scrap. Everything was derived from my master list (Appendix E), and I kept track of everything that had been completed, and what remained.

When determining the order of operations, I spoke with Conor Mulligan in order to increase the efficiency of both of our strikes. For example, Mulligan's crew had to clear out the practical lights, set mounted instruments, and special effects in order for my crew to strike the platforms. Meanwhile, my crew had to plug the ship's grating holes with sheets of plywood, so that he could get his lifts out to strike lights from the electric grid. Later in the process, his crew would have to strike all of the lights beneath the pit leaves and thrust before we could strike those units, and we had to clear the platforms off the stage so the electric battens could be brought down to a good strike height.

This process proved to be quite effective, and resulted in a quick and orderly strike. The scenic strike lasted for just under four hours, and the lighting strike was finished forty minutes later.
CHAPTER 5

CONCLUSION

This whole event took place over the course of seven months, from when I received the script at the end of the spring 2012 semester until strike in December of 2012, and it ended up being a large challenge for me. This show was my biggest, most complicated, and most expensive up to this point. I learned to delegate work to assistants and the importance of viewing the big picture, and not getting caught up in minutiae. This production combined everything that I learned at SDSU about project management, budgeting, and automation into one project, from how to properly draft and budget a show, through rigging and performer safety, and even included an automation aspect. Most importantly, the show forced me to improve my interpersonal skills and rely on others.

Not everything worked perfectly on the first time, and there were several frustrating moments. These not withstanding, the project as a whole went smoothly. The set functioned properly given the demands of the design and the exuberance of the performers. It was comfortably under budget, and it looked good as well. Theatre is a team sport, and the show would not have been nearly as successful without such a wonderful group of artists, advisers, assistants, and craftsmen.
REFERENCES

---. “Photograph of Model.” 2012. JPEG.
---. “Sketchup Rendering.” 2012. JPEG.

APPENDIX A

PRODUCTION PHOTOGRAPHS
Figure 1. An early sketch of the set. Courtesy of Ryan Grossheim. Source: Grossheim, Ryan. “Early Sketch.” 2012. JPEG.

Figure 2. A near final rendering of the design. Courtesy of Ryan Grossheim. JPEG. Source: Grossheim, Ryan. “Sketchup Rendering.” 2012. JPEG.
Figure 3. A white model of the final design. Courtesy of Ryan Grossheim. Source: Grossheim, Ryan. “Photograph of Model.” 2012.

Figure 7. Transition to Neverland, featuring acrobatic ropes and two sails. Photograph courtesy of Ralph Funicello. Source: Funicello, Ralph. “Neverland transition with acrobatics.” 2012. JPEG file.
Figure 7. Forest scene, featuring moon, wolf eyes, and two sails. Photograph courtesy of Ralph Funicello. Source: Funicello, Ralph. “Wolves in the forest.” 2012. JPEG file.

Figure 11. After the battle, featuring ropes, sails, and trap door. Photograph courtesy of Ralph Funicello. Source: Funicello, Ralph. “Hook's demise.” 2012. JPEG file.
APPENDIX B

COPIES OF SCALED DRAFTING
Plate 1. Ground plan.
Plate 2. Masking ground plan.
Plate 3. Section.
Plate 4. Masking section.
Plate 5. Pit leaves.
Plate 6. Thrust.
Plate 7. Band platform.
Plate 8. DSL platform.
Plate 9. US platforms.
Plate 10. Sails.
Plate 11. Bed, truss, and moon.
Plate 12. Shadow screens and ground row.
Plate 13. Drum baffle.
APPENDIX C

COPIES OF BUDGETING PAPERWORK
Peter Pan Material Usage and Budget Worksheet

Trap Fill

<table>
<thead>
<tr>
<th></th>
<th>2x4 (ft)</th>
<th>3/4" Ply</th>
<th>1/4" Luau</th>
<th>Stock Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf 1</td>
<td>21</td>
<td>0.5</td>
<td>175</td>
<td>2</td>
</tr>
<tr>
<td>Leaf 2</td>
<td></td>
<td></td>
<td>.5</td>
<td>2</td>
</tr>
<tr>
<td>Leaf 3</td>
<td>36.5</td>
<td>.25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Leaf 4</td>
<td>36.5</td>
<td>.25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Leaf 5</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Leaf 6</td>
<td>15</td>
<td>.5</td>
<td>175</td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td>106</td>
<td>1.5</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Thrust

<table>
<thead>
<tr>
<th></th>
<th>1x3 (ft)</th>
<th>2x4 (ft)</th>
<th>3/4" Ply</th>
<th>1/4" Luau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platforming</td>
<td>12</td>
<td>1.90</td>
<td>1.5</td>
<td>11</td>
</tr>
<tr>
<td>Legs</td>
<td></td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip door</td>
<td></td>
<td>1</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>3.07</td>
<td>1.5</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Bandstand

<table>
<thead>
<tr>
<th></th>
<th>1/4" MDF</th>
<th>1/4" Luau</th>
<th>Stock Platform</th>
<th>Batten Pipe</th>
<th>75" x 1.5" Rec Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platforming</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe Structure</td>
<td></td>
<td></td>
<td>74</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Band logo</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escape Stairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>74</td>
<td>48</td>
</tr>
</tbody>
</table>

DS Platforms

<table>
<thead>
<tr>
<th></th>
<th>2x4 (ft)</th>
<th>4x4 (ft)</th>
<th>3/4" ply</th>
<th>Batten Pipe</th>
<th>2" x 4" Rec Tube</th>
<th>3" d Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platforms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railings and legs</td>
<td>10.6</td>
<td>22.6</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper ladder</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fireman pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Totals</td>
<td>22.5</td>
<td>22.5</td>
<td>.5</td>
<td>37</td>
<td>56</td>
<td>16</td>
</tr>
</tbody>
</table>

Soils

<table>
<thead>
<tr>
<th></th>
<th>1x3 (ft)</th>
<th>1/4" Luau</th>
<th>Batten Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil 1</td>
<td>101</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Soil 2</td>
<td>60</td>
<td>Soil</td>
<td></td>
</tr>
<tr>
<td>Soil 3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>167</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Budget worksheet page 1
<table>
<thead>
<tr>
<th>Material</th>
<th>1x3 (ft)</th>
<th>2x4 (ft)</th>
<th>4x4 (ft)</th>
<th>2x8 (ft)</th>
<th>3/4" Ply</th>
<th>1/4" Lauan</th>
<th>1/4" Steel</th>
<th>Stock Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount needed</td>
<td>321.5</td>
<td>452.5</td>
<td>37</td>
<td>38</td>
<td>8</td>
<td>1</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>Material cost</td>
<td>$0.15</td>
<td>$0.63</td>
<td>$0.00</td>
<td>$0.37</td>
<td>$28.00</td>
<td>$12.83</td>
<td>$13.83</td>
<td>$0.00</td>
</tr>
<tr>
<td>Total cost</td>
<td>$49.28</td>
<td>$285.08</td>
<td>$0.00</td>
<td>$36.78</td>
<td>$224.00</td>
<td>$12.83</td>
<td>$457.38</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Batten Pipe</th>
<th>2x2x3/16" Angle Steel</th>
<th>3"x1.5" Rer Tube</th>
<th>2.5"x4" Rer Tube</th>
<th>1/4" PVC</th>
<th>1"x4" Tube</th>
<th>Special Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount needed</td>
<td>132</td>
<td>20</td>
<td>48</td>
<td>36</td>
<td>18.5</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Material cost</td>
<td>0</td>
<td>$3.65</td>
<td>$0.65</td>
<td>$4.25</td>
<td>$0.85</td>
<td>$1.95</td>
<td>$160.00</td>
</tr>
<tr>
<td>Total cost</td>
<td>0</td>
<td>$73.00</td>
<td>$31.20</td>
<td>$238.30</td>
<td>$15.73</td>
<td>$31.20</td>
<td>$160.00</td>
</tr>
</tbody>
</table>

Budget worksheet page 2
Peter Pan Soft Goods (TO PURCHASE)

<table>
<thead>
<tr>
<th>Item</th>
<th>Fabric Type</th>
<th>Fabric Width</th>
<th>Color</th>
<th>Yardage</th>
<th>JPY</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removable Projection Surface Seamless Piece</td>
<td>Muslin, Medium Weight, NFI</td>
<td>120"</td>
<td>Natural</td>
<td>3</td>
<td>$5.05</td>
<td>$15.15</td>
</tr>
<tr>
<td>RPS; Triangular Pieces</td>
<td>Muslin, Medium Weight, NFI</td>
<td>44"</td>
<td>Natural</td>
<td>7</td>
<td>$3.95</td>
<td>$27.66</td>
</tr>
<tr>
<td>Flag</td>
<td>Muslin, Medium Weight, NFI</td>
<td>44"</td>
<td>Natural</td>
<td>6</td>
<td>$3.95</td>
<td>$23.70</td>
</tr>
<tr>
<td>Sail 1</td>
<td>Celebration, FR</td>
<td>48"</td>
<td>Dove Gray</td>
<td>30</td>
<td>$5.55</td>
<td>$166.50</td>
</tr>
<tr>
<td>Sail 2</td>
<td>Celebration, FR</td>
<td>48"</td>
<td>Ivory</td>
<td>51</td>
<td>$5.55</td>
<td>$166.95</td>
</tr>
<tr>
<td>Sail 3</td>
<td>Celebration, FR</td>
<td>48"</td>
<td>Ivory</td>
<td>28</td>
<td>$5.55</td>
<td>$155.40</td>
</tr>
<tr>
<td>Ground Row</td>
<td>Metallic Tinsel</td>
<td>44"</td>
<td>Royal</td>
<td>16</td>
<td>$4.85</td>
<td>$77.60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$182.55</td>
</tr>
</tbody>
</table>

Budget worksheet page 3
APPENDIX D

PUNCH LISTS
Punch list #1

DLS Platforms
 Leg
 Lid
 Ladders
 Brace
 Firpole
 Dressing

Band Stand
 Brace
 Lid
 Pipe structure
 Letters

Band Escape

SL escape

Vertical Truss

Pit platform, door, and stairs

US Set Dressing

Middle rope rigging

Sails

Shadow box

Shadow puzzle

Fence

Ground rov (240)
Punch list 2

Peter Par Punch List #2
11/05/12

<table>
<thead>
<tr>
<th>Completion</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drum baffle</td>
</tr>
<tr>
<td></td>
<td>Automation cable bridge</td>
</tr>
<tr>
<td></td>
<td>Wire track limits on frankenwinch</td>
</tr>
<tr>
<td></td>
<td>Finish attaching railing posts</td>
</tr>
<tr>
<td></td>
<td>Leg or bolt solid posts</td>
</tr>
<tr>
<td></td>
<td>Cut truss decorative legs</td>
</tr>
<tr>
<td></td>
<td>Attach decorative legs</td>
</tr>
<tr>
<td></td>
<td>Move bracing as discussed with Ryan</td>
</tr>
<tr>
<td></td>
<td>Cut angled sonoube pieces</td>
</tr>
<tr>
<td></td>
<td>Run cable through railings</td>
</tr>
<tr>
<td></td>
<td>Finish rigging julk sail</td>
</tr>
<tr>
<td></td>
<td>Check grid connection for masking tab</td>
</tr>
<tr>
<td></td>
<td>Create attachment for water poes in rear of house</td>
</tr>
<tr>
<td></td>
<td>Discuss remaining decorative elements with Ryan</td>
</tr>
<tr>
<td></td>
<td>Start set dressing</td>
</tr>
<tr>
<td></td>
<td>Meet with Ryan, Justin, Margaret, Gabby re: noon cues</td>
</tr>
<tr>
<td>Completion</td>
<td>Task</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>x</td>
<td>Drum baffle</td>
</tr>
<tr>
<td>x</td>
<td>Automation cable bridge</td>
</tr>
<tr>
<td>x</td>
<td>Wire track limits on frankenwinch</td>
</tr>
<tr>
<td>x</td>
<td>Finish attaching railing posts</td>
</tr>
<tr>
<td>US completed</td>
<td>Leg or bolt solid posts</td>
</tr>
<tr>
<td>x</td>
<td>Cut truss decorative legs</td>
</tr>
<tr>
<td>x</td>
<td>Attach decorative legs</td>
</tr>
<tr>
<td>x</td>
<td>Move bracing as discussed with Ryan</td>
</tr>
<tr>
<td></td>
<td>Cut angled sonoube pieces</td>
</tr>
<tr>
<td></td>
<td>Run cable through railings</td>
</tr>
<tr>
<td></td>
<td>Finish rigging jurk sail</td>
</tr>
<tr>
<td></td>
<td>Check grid connection for masking tab</td>
</tr>
<tr>
<td>x</td>
<td>Create attachment for water poes in rear of house</td>
</tr>
<tr>
<td></td>
<td>Discuss remaining decorative elements with Ryan</td>
</tr>
<tr>
<td></td>
<td>Start set dressing</td>
</tr>
<tr>
<td>x</td>
<td>Meet with Ryan, Justin, Margaret, Gabby re: moon cues</td>
</tr>
<tr>
<td>x</td>
<td>Fix shadow screen hooks</td>
</tr>
<tr>
<td>x</td>
<td>Look at bed brake</td>
</tr>
<tr>
<td></td>
<td>Strengthen grating</td>
</tr>
<tr>
<td></td>
<td>Cut deco legs for leaves</td>
</tr>
</tbody>
</table>
Punch List 4

Sheetl

Peter Par Punch List #4

11/12/12

<table>
<thead>
<tr>
<th>Completion</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Check for loose lacing</td>
</tr>
<tr>
<td></td>
<td>Quiet cane bolts when unengaged</td>
</tr>
<tr>
<td></td>
<td>Nudge nightlights into position over bed</td>
</tr>
<tr>
<td></td>
<td>Retie SL rope</td>
</tr>
<tr>
<td></td>
<td>Quiet squeaky rescue sheave</td>
</tr>
</tbody>
</table>
APPENDIX E

STRIKE LIST
Peter Pan Strike Breakdown

Roll bed to demolition
Bring shadow screens to shop for demolition
Unscrew eye anchor
Screws
Return 1x3 to shop
Detach sail 1 from ground
Fly out all linesets
Dress back wing masking

Replace grating with plywood plugs
Screws
Grating goes to StarLab
Assist in removing set dressing
Cable cutters
Coil long cable for storage, short cable to dumpster
Pull decorative legs and railings
Screws, bolts, lags
Bring all to salvage
Strike duvexyn in L door
Fold neatly and stack in a clean area in the wagon house for restocking
Strike duvexyn in pit
Fold neatly and stack in a clean area in the wagon house for restocking

Disconnect rope swings and firepole
Bolts, lags, shackles, mousing wire
Lift required
Coil rope for storage up in grid
Firepole to metal shop

DSL Platforms
Remove lids and facing
Screws and staples
Remove bracing and ladders
Screws, lags, and bolts
Unbolt wooden legs and cut off ppe legs
Lags, sawzall or portabanc
Bring metal to metal shop for salvage, bring plywood to shop for salvage

Fence
Screws
Bring to shop for salvage and demolition

Ground row
Screws

Strike list page 1
Miniflats to flat rack in paint area
1x and hogstrough to shop for salvage

US Pipe structure
Bolts and clamps
Metal to metal shop for salvage
4x4 posts to shop for salvage

Band Pipe structure
Remove letters
Screws
Disassemble structure
Clamps and bolts
3ring all metal to metal shop for salvage

Spiral staircase
Remove landing
Screws and bolts
3ring to shop for salvage
Remove railings
Screws
3ring to shop for salvage
Remove stairs
Bolts and lags
Store in wagon house

US platforms
Remove bracing and facing
Bolts and staples
3ring to shop for salvage
Use Genie forsc to lift top platform and remove telescopic legs
Bring telescopic legs to shop for reshelving
Lower and remove angle steel stiffeners
Bolts
Steel to metal shop
Disconnect coffin locks with coffin key
Stack stock platforms, ensure wheeled platform is on the bottom of a stack
Use 2x1 spacer under each telescopic socket in stack
Stock platform stacks should only be 7 high
Disconnect ship ladder
Screws
3ring to shop for salvage
Strike remaining stock platforms
Telescop bolts and lags
3ring telescopic legs to shop for reshelving

Strike list page 2
Stack stock platforms, ensure wheeled platform is on the bottom of a stack
Use 2x4 spacer under each telespar socket in stack
Stock platform stacks should only be 7 high
Bring all custom platforms to shop for demolition and salvage

Band platform:
Remove lauan lid and facing
 Staple:
 Salvage as much of the large and full sheet as possible
Strike stock platforms
 Telespar bolts and lags
 Bring telespar legs to shop for reshelving
Stack stock platforms, ensure wheeled platform is on the bottom of a stack
Use 2x4 spacer under each telespar socket in stack
Stock platform stacks should only be 7 high
Strike stairs
 Screw:
 Bring all stair units to shop

Pit leaves:
Remove lauan lid and facing
 Staple:
 Salvage as much of the large and full sheet as possible
Strike stock platforms
 Telespar bolts and lags
 Bring telespar legs to shop for reshelving
Stack stock platforms, ensure wheeled platform is on the bottom of a stack
Use 2x4 spacer under each telespar socket in stack
Stock platform stacks should only be 7 high
Bring all custom platforms to shop for demolition and salvage
 Screw and bolts
 Erect rope barrier around open pit

Thrus:
Remove lauan lid and facing
 Staple:
 Salvage as much of the large and full sheet as possible
Disconnect sections
 Screw and bolts
 Bring sections to shop for demolition and salvage
Remove ladder and stairs from pit
 Bring to shop for salvage and restocking
See Loren or Jeremy to raise pit once all material is clear

Vertical truss

Strike list page 3
Disconnect top
Rope and bolts
Remove one section at a time
Bolts
Bring all truss to metal shop

Lineset strike
Keep at least two people on loading rail
Loudly vocalize all lineset operations, ensure response
Observe proper order of operations
Truss to be disconnected and returned to metal shop
Cables and bolts
Ropes on LS3 to be coiled neatly and placed with other help ropes
Flag to be brought to paint shop
Seil apparatus to be disconnected from battens and brought to shop for salvage
Cables

Strike list page 4