Reading Assignment: Chapter 1 in Text Book
ME 452 Course Syllabus

<table>
<thead>
<tr>
<th>Prerequisites:</th>
<th>Mechanical Engineering 350 (Thermodynamics) and Engineering Mechanics 340 (Fluid Mechanics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Hours:</td>
<td>MWF 12:00 to 12:50 PM, Hardy Tower 140.</td>
</tr>
<tr>
<td>Course Attendance:</td>
<td>Students are expected to attend each class and to be actively engaged in listening and answering questions if called upon, and to ask questions if something is not clear. Repeated absences, sleeping in class, etc. may result in a lowering of your grade.</td>
</tr>
</tbody>
</table>
ME 452 Course Syllabus

Credit: 3 units credit

Contact Info: E 323J Engineering Building
Tel. 619-594-5791, fax 619-594-3599
fletcher.miller@sdsu.edu

Office Hours: Tuesday/Thursday 3:00 to 4:00 PM. Other times by advance appointment (please send e-mail or call).

Textbook: Fundamentals of Heat and Mass Transfer 7th edition by Incropera, DeWitt, Bergman, and Lavine. Other books may be put on reserve in the library, and will be announced in class if/when needed.
ME 452 Course Syllabus

Software: Students are expected to have access to Excel or Matlab, since some assignments may be given that require calculations or graphs best done with a spreadsheet.

Homework: Homework will be assigned approximately weekly and count toward your grade as below. Homework should be undertaken on your own, but I encourage you to ask questions of me or your classmates as needed. Copying an assignment from someone else is not permitted and will result in a zero for you both on that assignment.

Examinations: There will be one midterm examination during the semester and a comprehensive final examination. Exams are open book; only calculators are allowed. No laptops or phones.

Quizzes: There will also be short quizzes weekly during class (Friday). These are closed book and no calculators or notes.

Final Exam: Wed, Dec 16th, 10:30 AM to 12:30 PM
ME 452 Course Syllabus

Grading:

- Homework: 30%
- Quizzes: 20%
- One examination during the semester: 20%
- Final examination: 30%

(See also statement about participation above)

Classroom behavior: Use of electronics (laptops, smart phones, dumb-phones, music players, etc.) is prohibited during class time, except as approved as part of the lesson. Please turn electronics off during the class; advance permission to keep them on with a justifiable reason can be requested. Eating or drinking during class is also prohibited.
Americans with Disabilities Act (ADA) Accommodation:

The University is committed to providing reasonable academic accommodation to students with disabilities. The Students Disabilities Services office provides university academic support services and specialized assistance to students with disabilities. Individuals with physical, perceptual, or learning disabilities as addressed by the Americans with Disabilities Act should contact Students Disabilities Services for information regarding accommodations. Please notify me in private or via e-mail so that reasonable efforts can be made to accommodate you. If you expect accommodation through the Act, you must make a formal request through Students Disabilities Services Calpulli Center, Suite 3100, Telephone: (619) 594-6473 or (619) 594-2929 (TDD/TTY).
Computer/internet access requirement:

At San Diego State University, computers and communications links to remote resources are recognized as being integral to the education and research experience. Every student is required to have his/her own computer or have other personal access to a workstation (including a modem and a printer) with all the recommended software. In the curriculum and class assignments, students are presumed to have access to a computer workstation and the necessary communication links to the Internet and the University’s information resources.
Student Learning Outcomes

1. Appreciation of the breadth and importance of heat transfer. Qualitative analysis of heat transfer phenomena and recognition of heat transfer in every day life and real situations.

2. Physical understanding of the three basic modes of heat transfer.

3. Calculation of steady state and transient heat transfer by conduction in various geometries.

4. Understanding of the boundary layer approximation for external convection heat transfer.
Student Learning Outcomes

5. Determination of the regime of convection heat transfer and application of the proper correlations and equations.

6. Ability to apply heat transfer equations to mass transfer situations.

7. Understanding of the radiative properties of materials and the terminology used to describe those properties.

8. Calculation of black body properties and heat transfer by radiation.